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Anomauia. Posensnymi 0coOIu8ocmi 6USHAYEHHs XAPAKMEPUCTIUK XGUTIOBAHMHS
npu GUKOPUCMAaHHi Memooa degopmosanux koopournam. Hagedeno nopienanns npoghinia
X8Ub, 5KI po3paxo8awi OJisl MIIKOBOOHOI axeamopii 3a HAOIUIICEHON MeOopIEl, U0
3anpononosana, 3a meopieto Cmokca ma 3a KHOIOanbHOW meopicio. Busuenns xeunvosux
PYXi8 HA BINbHIL NOBEPXHI 800 MOPI8 MA OKEAHI8 PO36UBAEMbCS 3 YOMUPMA HANPAMKAMU.
2IOPOOUHAMIYHOMY, EeHEPLeMUYHOMY, CTHAMUCHMUYHOMY MA CREeKMPATbHOMY HA OCHOSI
BUKOPUCMANHS MEOPEMUYHUX A eKChepuMeHmanvHux memooig. Cymuicms 2i0poou-
HAMIUHOI meopii X6uib NOAAAE Y MAMEMAMUYHOMY BUBUEHHT XBUbOBUX PYXi8 10edalbHOl
piounu i3 iNbHOIO nogepxuelo. Ll meopis 0036015€ GIPHO OYiHUMU GHYMPIWHIO OUHA-
MIUHY CMPYKMYPY X6UNbOBO20 DYXY, 36'SI3KU MIJNC OKpEeMUMU elleMeHmamy Xeuib. Bio-
nogidb HA 00HEe 3 OCHOGHUX NUMAHL Y Meopii MOPCbKUX X6UTb: YoMy 1ed8e NOMImHA
gimposa Opudic ni0 O0i€l0 CUNbHO20 GiMpY BUPOCMAE HA OKEAHCLKUX HPOCMOpAx 6
2I2aHMCK XGULI I SIKUTL MEXAHI3M IX 2ACIHHA 003605€ OMPUMATU eHEePeemUYHa meopis?

Biominnoto enacmugicmro MOpCcoKux X6uib € CKIAOHICMb | 8i00MA XAOMUYHICb
CMPYKmMYypU CX6UTbOBAHOI NoGepXHi. Buguenns yvboeo numanns eedemvcs 3 080X MOYOK
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Abstract. Specifics of defining characteristics for finite amplitude waves with the
help of deformed coordinates method for deep water and shallowness are shown.
Comparison of shallow water wave profiles for proposed approximate theory, Stokes and
cnoidal theories is introduced. The study of wave movements on the free surface of the
waters of seas and oceans develops in four directions: hydrodynamic, energetic,
statistical and spectral based on the use of theoretical and experimental methods. The
essence of the hydrodynamic theory of waves is the mathematical study of the wave
motions of an ideal fluid with a free surface.

This theory makes it possible to accurately assess the internal dynamic structure
of wave motion, the connections between individual elements of waves. The answer to one
of the main questions in the theory of sea waves: why does a barely noticeable wind
ripple under the action of a strong wind grow in the ocean spaces into giant waves and
what mechanism of their extinguishing allows the energy theory to be obtained? A
distinctive feature of sea waves is the complexity and known chaos of the structure of the
agitated surface.

The study of this issue is conducted from two points of view. On the one hand, the
statistical laws of the distribution of the directly observable elements of waves-heights,
periods, and lengths are studied; on the other hand, the internal spectral structure of the
surface, its energy spectrum, is studied.

Keywords: deep water, shallow water, non-linear wave theory, deformed
coordinates method, wave profile.
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Introduction. Safe operation of the Ukrainian maritime industry is impossible
without knowledge of wave characteristics. Both extreme data intended for the survival
mode of objects and operational data for the established operating mode are required.

The depths in most of the Ukrainian sector of the Black Sea water area do not
exceed 100 m, and the average depth of the sea is more than 1200 m [1]. Since under
these conditions the existence of both short and sufficiently long waves is possible, the
wave parameters must be determined for both limited and infinite depth.

Waves of extreme steepness outside the surf zone occur quite rare; expressions
defining wave characteristics finite amplitude are complex and cumbersome. Therefore,
for engineering calculations, the results of the linear theory of wave motion are mainly
used.

Consequently, the derivation and verification of a compact approximate
expression for the profile of progressive waves of finite amplitude in a liquid of arbitrary
depth seems to be a very urgent problem.

Analysis of major achievements and literature. The characteristics of waves of
finite amplitude have been studied by domestic and numerous foreign authors for more
than half a century. The main results were obtained within the framework of the potential
theory.

Among the large number of existing nonlinear theories of waves in a limited
water area, the most widespread are the Stokes theory and the cnoidal theory.

When using Stokes theory in engineering applications, as a rule, one is limited to five
terms in the series expansion of the wave surface equation in slope (for example). In [2], as an
example, a comparison of wave characteristics obtained from third- and fifth-order theories is
given. There are [2] expansions up to the eleventh order.

It should be noted [2] the use of Chapeler's theory, where the expansion
coefficients are determined numerically by the least squares method (by minimizing
errors in the boundary conditions on the free surface), as well as [2] the use of the so-
called new wave theory, which allows one to obtain a linear approximation to the most
probable form maximum wave in a storm.

For very shallow depths (less than a tenth of a wavelength), it is usually
recommended to use the cnoidal wave theory. It is known [6] that the expansion is up to
the ninth order for a solitary wave and up to the fifth order for cnoidal waves. In [7], the
existence of expansions of the fourteenth, seventeenth and twenty-seventh orders for
solitary waves is indicated.

The works [8, 9] provide approximate expressions for the velocity potentials of
free progressive waves of finite amplitude in shallow and deep water, respectively; an
assessment of the quality of the resulting solution is given below.

The applicability of various theories of wave formation can be assessed by the

2

values of the Ursell number Nyjpg = ﬂ3
h

when N pg > 26 — cnoidal theory. In between, both theories are applicable except

[5]: when N pg <10 — Stokes theory,

when, under the same conditions, the linear theory can be used. According to other
sources, the cnoidal theory should be applied when N g > 40 [6].
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The use of nonlinear theory is appropriate for wind waves of extreme steepness in
deep water, for long waves in significant shallow water and in the zone of wave
destruction.

According to data [1], the period of wind waves in the Black Sea, as a rule, does
not exceed 9 s. The length of such a wave in deep water conditions is 126 m. The height
of the waves does not exceed 6 m (except for the largest storm waves). Swell waves in
the Black Sea are long-period — 13-15 s. The lengths of such waves in deep water are
respectively 264-351 m, heights are up to 11 m.

In the shallow water zone (depth range — from half the wavelength to the critical
depth), the wave profile changes. The tops become sharper, the soles become flatter). Large
waves decrease, small ones lengthen and increase in height [6]. However, the average periods
and distributions of periods of wind waves during the transition from deep water to shallow
water practically do not change (statistical data) [5].

Wave destruction begins at a critical depth equal to twice the wave height. The
lower the initial steepness of deep water waves, the more their height increases and their
destruction begins at a smaller relative depth. For example, a swell wave with a period of
13 s and a steepness of 1/50 begins to collapse at a depth of 10,6 m, and with a steepness
of 1/30 — at a depth of 22,3 m; with a wave period of 15 s, these depths are 14 m and 27,6
m, respectively.

The purpose of the research is to determine the wave profile of finite amplitude
in deep and shallow water conditions using the deformable coordinate method.
Comparison of wave profiles calculated for shallow water areas using the proposed
approximate theory, Stokes theory and cnoidal theory.

Formulation of the problem. We will assume that the fluid is ideal, heavy,
incompressible, and its motion is potential. To describe the wave motion of a fluid in a
fluid of arbitrary depth 4, we use fixed and moving coordinate systems. As is customary
in hydrodynamic problems, the origin of the fixed Cartesian coordinate system Oxyz is
compatible with the free surface, x; axis is directed to the direction of wave propagation,

the Z1 axis is vertically upward. The moving Cartesian coordinate system Oxyz at t = 0
coincides with the fixed one and moves uniformly in the direction of wave travel with

speed . The velocity potential ¢(x,,z,,?) and wave profile are periodic with a period

equal to the wavelength A..
Let us proceed, as was done in [8], to the dimensionless characteristics

F=k(x,—ct) =k z; N=khjk=2-2;

~

(1)
d(x,—c-tz)= %Cf)(x, z);z,(x,—c-t)= lfg(x),

bl

here z, = z _(x,,t) — is the equation of the free surface of an excited fluid.
8 8 1» q
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In the following presentation, we will omit the sign «~» over dimensionless
coordinates and functions. Note also that the function & (x) — 21 — is periodic.

The domain of determination of the potential D (x, z) is respectively:

— in deep water — lower half-plane ; < ¢ ;

— in shallow water of depth / — a stripe {—00< x <00, — H <z <0}.

This area is a physical space in which the kinematic and hydrodynamic
characteristics of the wave motion under study are described.

Following the procedure outlined in [8; 9], perform the change of variables:
for unlimited depth

x=C¢+F(@Emn),z=n; 2)

for shallow water

x=§+K(Em),z=n. 3)

The functions F(E,m) and K(&,m) , which deform space, are defined
according to [8; 9], their specific form is given below. Further, instead of the normalized
physical space (X, Z), we will use the conditional deformed space (§, 1).

In the space (§, M) for the potential D(x,z) the following expressions are

obtained:
for deep water [9]

®(&,m) = Aexp( on )sin ©f , (4)
where
o8 - L&
ke? 2w c?

for shallow water [8]

®(E,M)=Bchoa(n+ H)sin af —

_lea3 ch20c(n+H)s;n2oc& —leocsin2oc§’
2 oash2aH —2a°ch2aH 8

)

where O — is the wave number in the deformed space (1), associated with the ®

dispersion relation

a=othoaH. (6)
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The constants A in formula (4) and B in formula (5), given in [9] and [8]
respectively without derivation, are defined below.

Let us denote /1, the height of the wave crest above the undisturbed free surface,
and /_ — the distance of the base from the undisturbed free surface. Then in the

. . . k
normalized physical coordinate system (X, Z) the value krg = E(h .+ h_) represents

the half-height of the wave.
Research materials. The equation of the wave profile in the coordinate system (X,
Z), corresponding to the nonlinear boundary condition on the free surface, has the form

1 0
&, (%) 255(1)[%2 = %gg(x)]—

11 (7

== {%@[x,na(x)]} +[§®[xaz=é<x>]}

20

Expanding the derivatives of the potential D(x, Z) in powers of &_(x)=0(g) and
preserving terms up to the second order of smallness inclusive, we find

56<x)=1{§®<x,0>+@<x> d <D<x,0>}—
X 0

0] 0x0z
11[[e > 1o ? ’ ®)
——| —D(x,0) | +| —D(x,0 —
2w [8}6 (x )} [82 (x )}

when follows

1|0 1 0 0
E_,g (X) = —|:aq)(x,0) + 6 . aq)(x,()) . @CD(X,O)} —

()]
©
1 1[0 > To ?
— = S D(x0) | 4| —D(x,0) ] *
2 o [8x (x )} [82 (x )}
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Considering the dependencies between the derivatives of potentials written in
normalized physical space and deformed space and still preserving terms up to the second

order of smallness inclusive, we write in the variables (a, M) of the deformed space

1 1 0
=—| —D(,0) -~ —D(E,0)—D(E0) |+ —-—-—D(E,0) x
& (S) {a(i)a(i)a(i)}mmaa(i)

o’ 0 ’ o
X - d(E,0 D0 .
oeon D(E,0) 5 {55,. (& )} {511 (€ )}
The function F(E, 1) is written [9] in the form
1 1 .
F&en)=—5@(En) = -5 dexp(@n)sinog, (1)
then
2
0 0 02 0
- ®(£,0)| b-(12)
Ce(8) = {ag o ot Seon { on (&, )} }
In deep water, the wave profile equation according to (4) is written as
@6(§):Acosw§+mA2 cos> wé—%wAz sinzmé. (13)

Since the tangent to the wave profile at the top and bottom of the wave is
horizontal, i.e.

06,(§=0)

=0, 14
oF (14)

where & _ (& =0) = kr,, to determine the constant A, a quadratic equation is used
WA + A—kr, =0, (15)

whose solution has the form

A—21 (-1 1+ 40k, ). (16)

®
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The quadratic equation for determining the constant A has two real roots of

opposite signs, providing at a = 0, therefore, at X = 0 the same half-height
€,(0) = kr, . An unambiguous choice of the value of A is obtained from the condition

which means there are no collapsing waves in space (X, Z).

di&x(ﬁ,()) >0, (17)

Then

1
ix(&,O) =1- %oaA cos(w¢g), ‘EcoA

dg

<1 (18)

and finally

A= (14 T+ dokr, ) (19)

20

We obtain the wave profile equation in shallow water by substituting (5) into (12)
and retaining terms up to order B’ inclusive:

£, (&)= l(Ochhochos o — B*a’ ch2oH -cos20f
© osh2oH —2och20H

1 1 1
—ZBZOLZ cos2ag + 2—B20c3sh20chos2 o ——B%a’sh*aH + (20)

(Y
1
+ ZBZ(xzshZ(chos&xij.
To determine the constant B we use the expression
3 2 3
o o ch2oH o o
kr, = Bl —choH |- B*| = +-————sh2aH |. 1)
o o osh2oH —2och2o0H 40 20
Let us transform it taking into account the dispersion relation (6).
Then
(04
—choH =shaH . (22)
o
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Further
o’ ch2oH 1+ thzocH o’
— =—qa = —th(xH
o osh2oH —2ach2oH 2thaH ~ 40 4 23)
2 3 3
H H
S sh2aH =2 th O; ; ¢ 2sh2(xH:(xth+.
4o 41-th"aH 2 1—th“aH
Carrying out substitutions and transformations, we get
1+ th*oH _that 3 th®oH
£, (€)= BshoH coso& + B ol >
2thoH 4 4 1—th oH
; (24)
1 thoH
x cos2o.& + e
41—th*oaH
From here
4 . 4
& (&)= BshoH cosot + B 2th"oH th*aH + 2) 020s20c§ +th aH 29
4thoH(1—th aH)
While € = 0 it turns out
4 2
kr, = BshoH + B’a 3th o —th O;H * 2 (26)
4thoH (1 —th"oH)
Quadratic equation for determining the constant 5
4 2
0(3th ot ~th" 0l +2) p2 | o HB — ke, = 0. @7)

4thaH (1 - th*o.H)
Equation (27), like (15), has two real roots of opposite signs, ensuring at & =0
(i.e. x = 0) the same half-height of the wave & (0) = kr, . The choice of root, as in the

case of deep water, is determined by the condition of non-destruction of the wave in the
normalized physical space (X, z). This is done if

x(5,0) =1 —@chaH -cosag >0, @chaH <1. (28)
O& 2 2
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Thus, the constant B is the affirmative root of equation (27).
Let us show that the average level of the excited liquid does not coincide with the
unperturbed free surface.

I& (x)dx = Ii (i)—&di—

2n 1( th’aH  thaH |_ B’n
a 4\1-th’aH 1-thaH

(29)

= B%a- 2= thoH # 0.

a

Note also that the wavelength A as the distance between the vertices of adjacent
ridges (or between adjacent antinodes that are in the same oscillation phase) in both

spaces (X, Z) and (a, M) is determined by the formula

l—z—ﬁ——Bcha(n+H)sm(a2—ﬁ]—2—ﬂ. (30)
o o o

Since the space (X, Z) is normalized and in this space A = 2m, k = 1, from (30)
and (6) it follows

a=k=1, o=——10: 31)
thH

Note that for the case of deep water from (31) we obtain ® = 1, and for shallow
h L A
water, when — ~ 0(g), it will be @@~—.
A 2mh
Research results. Expression for the wave profile at an arbitrary value of depth,
consists of two, linear and quadratic, components relative to the amplitude.

To assess the quality of the obtained solution, the shape of the wave profile was
calculated using formulas (6), (20), (27) and (31) for various ratios of wavelength and

h r
depth H = 2Tcz , wave amplitude and wavelength 7 = 275% )
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Results of experimental determination of shape wave profile taken from [10]. The
wave profiles corresponding to these data were calculated using the proposed
approximate theory, the fifth-order Stokes theory, and the cnoidal theory. In Fig. 1 and 2
show two implementations as examples.

0.8

-0.4

h
Fig. 1. Relative ordinates of the wave profile at relative depth H = 21— = 0,446

7,
and relative half-height r = 27[% =0,12

1 — calculation according to (20);
2 — cnoidal theory;

3 — Stokes theory;

4 — experiment [10];

Ursell number Nygps= 106,73
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0.8

0.6

0.4

0.2

0.2

04

0.6

h
Fig. 2. Relative ordinates of the wave profile at relative depth H = 2TCX =0,873

7,
and relative half-height r = 27[% =0,162

1 — calculation according to (20);
2 — cnoidal theory;

3 — Stokes theory;

4 — experiment [10];

Ursell number Nygs = 19,21

Conclusions. The results of calculations based on the proposed approximate
theory are in quite satisfactory agreement with the experimental data. The wave profiles
calculated using the approximate theory, the fifth-order Stokes theory, and the cnoidal
theory are qualitatively the same; the quantitative differences between them are of the
same order as those given in [2] when comparing the results of calculations of wave
profiles using the Stokes theory of the fifth and third orders.
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