Композитні матеріали в суднобудуванні: перспективи та виклики
##plugins.themes.bootstrap3.article.main##
Анотація
У статті здійснено системний аналіз потенціалу композитних матеріалів у сучасному суднобудуванні, зокрема з погляду їх функціонального призначення, довговічності, технологічної сумісності та екологічної доцільності. Метою роботи є досягнення науково обґрунтованої класифікації композитних матеріалів, придатних до використання в суднобудуванні, а також виявлення перспективних напрямів їх застосування та обмежень в умовах морського середовища. У процесі дослідження використано оглядово-аналітичний підхід, що включає методи типологізації, порівняльного аналізу фізико-механічних характеристик матеріалів, критичної оцінки літературних джерел та сучасних нормативних документів. Джерельну базу становлять понад 30 наукових публікацій. Сформовано функціональну класифікацію композитних матеріалів за ознаками хімічної природи, типом армування, джерелом походження та сферою застосування. Виокремлено п’ять перспективних типів композитів: полімерні армовані (FRP), синтактичні піни, гібридні композити, неорганічні вогнестійкі системи та екологічно орієнтовані біокомпозити. Для кожного з них наведено опис властивостей, типові сфери застосування, технологічні переваги й експлуатаційні обмеження. Наукова новизна дослідження полягає у міждисциплінарному підході до оцінки композитів у контексті морського середовища ‒ з урахуванням не лише конструкційних та економічних, а й екологічних і нормативно-регуляторних факторів. Окреслено перспективи подальшої інтеграції композитів у критично важливі елементи суднових систем із одночасним розвитком технологій рециклінгу та ремонту. Практична значущість результатів полягає у можливості їх використання для прийняття рішень на етапах вибору матеріалів, проектування, стандартизації та оновлення флоту. Представлені висновки можуть бути враховані при розробці національних та галузевих рекомендацій щодо впровадження композитних матеріалів у морське машинобудування.
##plugins.themes.bootstrap3.article.details##
Посилання
2. Saravanan M., & Bubesh Kumar D. (2020). A review on navy ship parts by advanced composite material. Materials Today: Proceedings, xxx, xxx. https://doi.org/10.1016/j.matpr.2020.10.074
3. Huang X., Su S., Xu Z., Miao Q., Li W., & Wang L. (2023). Advanced composite materials for structure strengthening and resilience improvement. Buildings, 13(10), 2406. https://doi.org/10.3390/buildings13102406
4. Cao S., Jiang T., Shi S., Gui X., Wang Y., Tang B., Xiang L., Dai X., Lin D., Zhong N., Li W., Yu J., & Wu X. (2024). Fabrication and compression properties of reinforced epoxy syntactic foam with basalt fiber. Advances in Polymer Technology, 2024, 12 pages. https://doi.org/10.1155/2024/9224136
5. Jayakanth J.J., Mamidi V.K., Pugazhenthi R., Anbuchezhiyan G., & Pon- shanmugakumar A. (2021). An investigation on wear properties of SiC/WC strengthened aluminium alloy hybrid composites. Materials Today: Proce- edings, xxx(xxxx), xxx. https://doi.org/10.1016/j.matpr.2020.12.416
6. Gupta N., Zeltmann S.E., Shunmugasamy V.C., & Pinisetty D. (2014). Applications of polymer matrix syntactic foams. JOM, 66(2), P. 245-254.
7. Han Z., Jang J., Souppez J.-B.R.G., Seo H.-S., & Oh D. (2023). Comparison of structural design and future trends in composite hulls: A regulatory review. International Journal of Naval Architecture and Ocean Engineering, 15, 100558.
8. Dolz M., Martinez X., Sa D., Silva J., & Jurado A. (2024). Composite materials, technologies and manufacturing: Current scenario of European Union shipyards. Ships and Offshore Structures, 19(8), P. 1157-1172.
9. Koci, M. (2024). Composite materials behavior analyze for desk, hull and board yacht's panel. European Journal of Engineering and Formal Sciences, 7 (1), P. 1-10.
10. Kyzioł L. (2019). Composite materials for warship constructions. Journal of KONES Powertrain and Transport, 26(4), P. 135-140.
11. Vizentin G., & Vukelic G. (2020). Degradation and Damage of Composite Materials in Marine Environment. Materials Science (Medžiagotyra), 26(3), 337–343. https://doi.org/10.5755/j01.ms.26.3.22950
12. Imran M., Shi D., Tong L., & Waqas H.M. (2019). Design optimization of composite submerged cylindrical pressure hull using genetic algorithm and finite element analysis. Ocean Engineering, 190, 106443.
13. Jesthi D.K., & Nayak R.K. (2019). Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites. Composites Part B: Engineering, 174, 106980. https://doi.org/10.1016/j.compositesb.2019.106980
14. Karthik K., Rajamani D., Venkatesan E.P., Shajahan M.I., Rajhi A.A., Aabid, A., ... & Saleh, B. (2023). Experimental Investigation of the Mechanical Properties of Carbon/Basalt/SiC Nanoparticle/Polyester Hybrid Composite Materials. Crystals, 13(3), 415.
15. Ardeleanu M.E., Stănescu D.G., Adam V., Scornea A., & Mihalcea I. (2019). Experimental Study of Some Composite Materials Characteristics. 2019 International Conference on Electromechanical and Power Systems (SIELMEN), P. 1-4.
16. Rajak D.K., Pagar D.D., Menezes P.L., & Linul E. (2019). Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers, 11(10), 1667.
17. Tran P., Nguyen Q.T., & Lau K.T. (2018). Fire performance of polymer- based composites for maritime infrastructure. Composites Part B, (2018), doi: 10.1016/j.compositesb.2018.06.037.
18. Kemény A., Leveles B., & Károly D. (2021). Functional aluminium matrix syntactic foams filled with lightweight expanded clay aggregate particles. Materials Today: Proceedings, 45, P. 4229-4232.
19. Crupi V., Epasto G., Napolitano F., Palomba G., Papa I., & Russo P. (2023). Green Composites for Maritime Engineering: A Review. J. Mar. Sci. Eng., 11 (3), 599..
20. Job S. (2015). Why not Composites in Ships? Reinforced Plastics, 59(2), 90-93.
21. Oladele I.O., Omotosho T.F., & Adediran A.A. (2020). Polymer-Based Composites: An Indispensable Material for Present and Future Applications. International Journal of Polymer Science, 2020, 1-12.
22. Kim H.S., & Plubrai P. (2004). Manufacturing and failure mechanisms of syntactic foam under compression. Composites Part A: Applied Science and Manufacturing, 35(8), P. 1009-1015.
23. Rizzi E., Papa E., & Corigliano A. (2000). Mechanical behavior of a syntactic foam: experiments and modeling. International Journal of Solids and Structures, 37(40), P. 5773-5794.
24. Kádár Cs., Szlancsik A., Dombóvári Z., & Orbulov I. N. (2019). Monitoring the failure states of a metal matrix syntactic foam by modal analysis. Materials Letters, 257, 126733. https://doi.org/10.1016/j.matlet.2019.126733
25. Bolat Ç., Akgün İ.C., & Gokşenli A. (2020). On the Way to Real Appli- cations: Aluminum Matrix Syntactic Foams. European Mechanical Science, 4(3), P. 131-141. https://doi.org/10.26701/ems.703619
26. Routray S., Sundaray A., Pati D., & Jagadeb A.K. (2020). Preparation and Assessment of Natural Fiber Composites for Marine Application. J. Inst. Eng. India Ser. D. https://doi.org/10.1007/s40033-020-00230-5
27. Barsotti B., Gaiotti M., & Rizzo C.M. (2020). Recent Industrial Develop- ments of Marine Composites Limit States and Design Approaches on Strength. Journal of Marine Science and Application, 19, P. 553-566. https://doi.org/10.1007/s11804-020-00171-1
28. Rohith K., Shreyas S., Vishnu Appaiah K.B., Sheshank R.V., Ganesha B.B., & Vinod B. (2019). Recent Material Advancement for Marine Application. Materials Today: Proceedings, 18, P. 4854-4859.
29. Rajak D.K., Pagar D.D., Kumar R., Pruncu C.I., & Pruncu C. (2019). Recent progress of reinforcement materials: A comprehensive overview of compo- site materials. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2019.09.068
30. Chen N.-Z., Sun H.-H., & Guedes Soares C. (2003). Reliability analysis of a ship hull in composite material. Composite Structures, 62(1), P. 59-66.
31. Mouritz A.P., Gellert E., Burchill P., & Challis K. (2001). Review of advanced composite structures for naval ships and submarines. Composite Structures, 53(1), P. 21-41.
32. Bakshi M.S., & Kattimani S. (2020). Study of mechanical and dynamic mechanical behavior of halloysite nanotube-reinforced multiscale syntactic foam. J Appl Polym Sci., e49855. https://doi.org/10.1002/app.49855
33. Kim D.-U., Seo H.-S., & Jang, H.-Y. (2021). Study on Mechanical Bearing Strength and Failure Modes of Composite Materials for Marine Structures. J. Mar. Sci. Eng., 9(7), 726. https://doi.org/10.3390/jmse9070726
34. Afolabi L.O., Ariff Z.M., Hashim S.F.S., Alomayri T., Mahzan S., Kamarudin K.-A., & Muhammad I. D. (2020). Syntactic foams formulations, production techniques, and industry applications: a review. Journal of Materials Research and Technology, 9(5), P. 10698-10718.
35. Ruzuqi R. (2020). Tensile Strength Analysis of Polymer Composite Materials Fiber Reinforced in The Fiber Boat Application. Journal of Research and Opinion, 7(8), Р. 2763-2769. DOI: 10.15520/jro.v7i8.74
36. Lee S.-G., Oh D., Woo J.H. The Effect of High Glass Fiber Content and Reinforcement Combination on Pulse-Echo Ultrasonic Measurement of Composite Ship Structures. J. Mar. Sci. Eng. 2021, 9, 379. https://doi.org/10.3390/jmse9040379
37. Chalmers D.W. (1994). The Potential for the Use of Composite Materials in Marine Structures. Marine Structures, 7, P. 441-456.
38. Grabian J., Ślączka W., Pawłowska P., & Kostrzewa W. (2017). The role of innovative composite materials in the safe and efficient operation of floating marine structures. Scientific Journals of the Maritime University of Szczecin, 52(124), P. 23-29.
39. Geuskens F., Jurg R., & Collier B. (2019). Tool-less Manufacturing of Composite Hulls and Superstructures.
40. Samoilescu G., Bordianu A., & Patroi E. (2019). Use of composite materials in shipbuilding. Utility and necessity. Scientific Bulletin of Naval Academy, XXII(1), P. 17-20.