Underwater LiDAR as a key component of integrated ocean research systems
Main Article Content
Abstract
Light Detection and Ranging (LiDAR) technology is opening up new horizons for exploring the deep sea. While ground-based and airborne LiDAR systems are actively used to create high-precision topographic maps, underwater LiDAR systems represent an innovative and promising direction for bathymetric mapping. The proposed underwater LiDAR systems are capable of providing centimeter accuracy in coastal and shallow water areas where traditional acoustic methods face limitations. By using laser radiation in the blue-green spectral range (typically 532 nm), underwater LiDAR is able to penetrate the water column to depths of tens of meters, providing dense coverage of data points. The system can be integrated with autonomous underwater vehicles (AUVs), remotely operated vehicles (ROVs), or surface platforms to efficiently collect data on seabed topography, underwater object structure, and water environment characteristics. The development of affordable underwater LiDAR systems is of strategic importance for the development of science in the marine field, providing an opportunity to study in detail underwater landscapes, marine ecosystems, archaeological sites and coastal infrastructure. The implementation of this technology will contribute to the ambitious goal of complete mapping of the ocean floor by 2030, especially in areas where existing technologies are inefficient or inapplicable.
Article Details
References
2. Mayer L. et al. The Nippon Foundation ‒ GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030, Geosciences, vol. 8, no. 2, 2018.
3. Mayer L.A. Frontiers in Sea Floor Mapping and Visualization. Marine Geophysical Researchers, vol. 27, no. 1, pp. pp. 7-17, March 2006.
4. Demetra 5. Каталог багатопроменевих ехолотів (MBES) [Електронний ресурс]. ‒ Режим доступу: http://www.demetra5.kiev.ua/ua/catalog/MBES
5. Colbo K., Ross T., Brown C., and Weber T. A review of oceanographic applications of water column data from multibeam echosounders. Estuarine, Coastal and Shelf Science, vol. 145, Р. 41-56, 2014.
6. Brown C.J., Smith S.J., Lawton P., and Anderson J.T. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuarine, Coastal and Shelf Science, vol. 92, no. 3,.
7. Massot-Campos M. and Oliver-Codina G. Optical Sensors and Methods for Underwater 3D Reconstruction. Sensors (Basel), vol. 15, no. 12, Р. 31525-57, Dec 15 2015.
8. Westfeld P., Maas H.-G., Richter K., and Weiß R. Analysis and correction of ocean wave pattern induced systematic coordinate errors in airborne LiDAR bathymetry. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 128, Р. 314-325, 2017.
9. Dierssen H.M. and Theberge A.E. Bathymetry: Assessing Methods in Encyclopedia of Natural Resources: Water, 2016, Р. 629-636.
10. Costa B.M., Battista T.A., and Pittman S.J. Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sensing of Environment, vol. 113, no. 5, Р. 1082-1100, 2009.
11. Shintani C. and Fonstad M.A. Comparing remote-sensing techniques collecting bathymetric data from a gravel-bed river. International Journal of Remote Sensing, vol. 38, no. 8-10, Р. 2883-2902, 2017.
12. Dekker A.G. et al. Intercomparison of shallow water bathymetry, hydro- optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnology and Oceanography Methods, vol. 9, Р. 396-425, 2011-09-27 2011.
13. Casella E.et al. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs, vol. 36, no. 1, Р. 269-275, 2016.
14. Finkl C. and Makowski C., Seafloor Mapping along Continental Shelves: Research and Techniques for Visualizing Benthic Environments (Coastal Research Library). Springer, 2016.
15. Jordan D.C. and Fonstad M.A. Two Dimensional Mapping of River Bathymetry and Power Using Aerial Photography and GIS on the Brazos River, Texas. Geocarto International, vol. 20, no. 3, Р. 13-20, 2005.
16. Feurer D., Bailly J.-S., Puech C., Coarer Y.Le, and Viau A.A. Very-high- resolution mapping of river-immersed topography by remote sensing. Progress in Physical Geography, vol. 32, no. 4, Р. 403-419, 2008.
17. Kocak D.M. and Ouyang B. Underwater imaging: Photographic, digital and video techniques. 2013, Р. 275-293.
18. Watson J., Subsea imaging and vision: An introduction. 2013, Р. 17-34.
19. Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J. and Reynolds J.M. Structure-from-Motion’ photogrammetry: A lowcost, effective tool for geoscience applications. Geomorphology, vol. 179, Р. 300-314, 2012/12/15/ 2012.
20. Dietrich J.T. Bathymetric Structure-from-Motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surface Processes and Landforms, vol. 42, no. 2, Р. 355-364, 2017.
21. Williams S.B., Pizarro O., Mahon I. and Johnson-Roberson M., Simultaneous Localisation and Mapping and Dense Stereoscopic Seafloor Reconstruction Using an AUV. vol. 54, ed, 2009, Р. 407-416.
22. Thrun S. and Leonard J.J. Simultaneous Localization and Mapping in Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 871-889.
23. Kunz C. and Singh H. Stereo self-calibration for seafloor mapping using AUVs in 2010 IEEE/OES Autonomous Underwater Vehicles, 2010, Р. 1-7.
24. Chazette P., Totems J., Hespel L., and Bailly J.-S. Principle and Physics of the LiDAR Measurement in Optical Remote Sensing of Land Surface, 2016, Р. 201-247.
25. Dierssen H.M. and Theberge A.E. Bathymetry: Assessing Methods,» in Encyclopedia of Natural Resources: Water, 2016, Р. 629-636.
26. Quadros N.D., Collier P.A., and Fraser C.S. Integration of Bathymetric and Topographic Lidar: A Preliminary Investigation.pdf. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 37, no. Part B8.
27. Rumbaugh L. A 532 nm Chaotic Fiber Laser Transmitter for Underwater Lidar. Master of Science (Electrical Engineering), Department of Electrical and Computer Engineering, Clarkson University, 2013.
28. Kinzel P., Legleiter C., and Nelson J. Mapping River Bathymetry With A Small Footprint Green LIDAR: Applications and Challenges. Journal of the American Water Resources Association, vol. 49, no. 1, Р. 22, February 2013
2013.
29. Технологія у фокусі: батіметричний лідар. Натан Квадрос (Науково- дослідний центр просторової інформації, Австралія). 10 01 2018 p., Сучасні технології вимірювань. https:// www.hydro- international. com/content/article/technology-in-focus-bathymetric-lidar
30. Zimmerman R.C., Sukenik C.I., and Hill V.J. Subsea LIDAR systems in Subsea Optics and Imaging, 2013, Р. 471-488e.
31. Shan J., Topographic laser ranging and scanning principles and processing. Boca Rato: Boca Raton: CRC Press/Taylor & Francis Group, 2009.
32. Dehong C., Liangqi Z., Pengpeng S., Zaiyang T., Yuhao M. and Yong W. Design and implementation of LiDAR navigation system based on triangulation measurement in 2017 29th Chinese Control And Decision Conference (CCDC), 2017, Р. 6060-6063.
33. Mcleod D., Jacobson J., Hardy M., and Embry C. Autonomous Inspection using an Underwater 3D LiDAR presented at the OCEANS 2013, San Diego, 2013.
34. Popescu S.C. Lidar Remote Sensing (Chapter 3) in Advances in Environmental Remote Sensing, Q. Weng, Ed.: CRC Press, Taylor and Francis Group, 2011.
35. Hou W.W. et al. FMCW optical ranging technique in turbid waters presented at the Ocean Sensing and Monitoring VII, 2015.
36. Kalden P. and Sterna E. Development of a low-cost laser rangefinder (LIDAR). Master's of Systems, Control and Mechatronics, Department of Microtechnology & Nanoscience, Chalmers University of Technology, Gothenburg, Sweden, 2015.
37. Filisetti Andrew, Marouchos Andreas, Martini Andrew, Martin Tara, Collings Simon. Developments and applications of underwater LiDAR systems in support of marine science Conference: OCEANS 2018 MTS/IEEE Charleston, October 2018. DOI: 10.1109/OCEANS.2018.860.
38. Spore N.J. and Brodie K.L. Collection, Processing, and Accuracy of Mobile Terrestrial Lidar Survey Data in the Coastal Environment. 01 Apr 2017 2017.
39. Chust G., Grande M., Galparsoro I., Uriarte A., and Borja Á. Capabilities of the bathymetric Hawk Eye LiDAR for coastal habitat mapping: A case study within a Basque estuary. Estuarine, Coastal and Shelf Science, vol. 89, no. 3, Р. 200-213, 2010.
40. Illig D.W., Rumbaugh L.K., Banavar M.K. and Jemison W.D. Blind signal separation for underwater lidar applications, 2016.
41. Birkebak M., Eren F., Pe’eri S., and Weston N. The Effect of Surface Waves on Airborne Lidar Bathymetry (ALB) Measurement Uncertainties. Remote Sensing, vol. 10, no. 3, Р. 453, 2018.
42. Pe'eri S., Gardner J.V., Ward L.G. and Morrison J.R. The Seafloor: A Key Factor in Lidar Bottom Detection. IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 3, Р. 1150-1157, 2011.
43. 3D at Depth [Електронний ресурс]. – Режим доступу: https://3datdepth.com/