Overview of plasma powder surfacing methods in shipbuilding and ship repair

Main Article Content

О. Stalnichenko
Ye. Naumenko
K. Kreitser
Ye. Kozishkurt
E. Bogomolov

Abstract

Plasma powder surfacing is a high-tech process used to apply protective and restorative coatings to various materials, most commonly metals. This method is particularly valued for the high precision, power and controllability of the plasma arc, which makes it possible to achieve high-quality coatings with improved mechanical properties and wear resistance. The current state of plasma powder surfacing technology is characterized by a constant striving for process optimization to increase deposition efficiency, improve coating adhesion and reduce porosity. Advances in computer technology and automation have improved plasma arc control and powder feeding accuracy. However, problems in this area remain relevant. One of the main tasks is to control the thermal conditions of the process, since excessive thermal effects can lead to deformation of the base material and deterioration of coating properties. Considerable attention is also paid to the development of new composite powders that would provide improved performance and at the same time be compatible with environmental standards. The problem of ensuring the uniformity of powder distribution in the plasma jet is still relevant, as it directly affects the quality and properties of coatings. The study of the interaction between the plasma jet and the powder material remains a subject of scientific research, including particle dynamics and heat transfer. In general, plasma powder surfacing continues to develop as an important tool method in materials science that can meet the growing demands of industry for quality, durability, and product recovery.

Article Details

How to Cite
StalnichenkoО., Naumenko, Y., Kreitser, K., Kozishkurt, Y., & Bogomolov, E. (2023). Overview of plasma powder surfacing methods in shipbuilding and ship repair. Herald of the Odessa National Maritime University, (71), 152-171. https://doi.org/10.47049/2226-1893-2023-4-152-171
Section
Problems of restaring the technical condition of ship technical equipment
Author Biographies

О. Stalnichenko, Odesa National Maritime University, Odesa, Ukraine

Ph.D, Professor, Нead of the Department «Materials technology»

Ye. Naumenko, Odesa National Maritime University, Odesa, Ukraine

Ph.D., associate professor of the Department «Materials technology»

K. Kreitser, Odesa National Maritime University, Odesa, Ukraine

Ph.D., Senior lecturer of the Department «Materials technology»

Ye. Kozishkurt, Odesa National Maritime University, Odesa, Ukraine

Ph.D, Senior lecturer of the Department «Materials technology»

E. Bogomolov, Odesa National Maritime University, Odesa, Ukraine

Senior Lecturer of the Department «Materials technology»

References

1. Cheng, J., Li, J., Li, X., & Zhang, Y. (2019). Microstructure and properties of Ni-based alloy coatings prepared by plasma-powder surfacing on a ship propeller. Surface and Coatings Technology, 359, 436-445.
2. Sun, Q., Tang, S., Liu, Q., & Feng, Z. (2020). Improvement of tribological performance of marine diesel engine cylinder liner by plasma spraying Ti- based alloy coatings. Journal of Materials Research and Technology, 9(1), 710-720.
3. Wang, X., Zhang, J., Zhao, X., Yang, Y., & Liu, C. (2021). Performance of TiB2 / Ti-composite coatings prepared by plasma-powder surfacing on a ship rudder. Surface and Coatings Technology, 417.
4. Gao, J., Wu, S., Yu, H., & Tang, X. (2019). The microstructure and properties of Ni-based alloy/SiC composite coatings prepared by plasma- powder surfacing on ship propeller. Surface and Coatings Technology, 357, 1069-1077.
5. Wu, S., Zhang, J., Yu, H., Gao, J., & Tang, X. (2020). Preparation and properties of Ni-based alloy/GO composite coatings by plasma-powder surfacing on ship valve. Surface and Coatings Technology, 399.
6. Yu, H., Gao, J., Wu, S., Tang, X., & Li, S. (2021). Effects of tungsten carbide on the microstructure and properties of plasma-powder surfacing Ni-based alloy coatings. Surface and Coatings Technology, 409.
7. Natarajan, S., Vijayaraghavan, L., Sivakumar, G., & Sundarajan, G. (2016). Tribological behaviour of plasma sprayed cobalt-based alloy coatings // Journal of Manufacturing Processes, 21, 86-93. DOI: 10.1016/j. jmapro. 2016.03.002
8. Alharbi, H. F., Alhazza, K. A., Alkahtani, A., & AlQahtani, N. (2021). Investigation of the tribological behaviour of HVOF-sprayed cobalt-based alloys in 3,5 % NaCl solution. Surface Engineering, 37(3), 196-206. DOI: 10.1080/02670844.2019.1693441
9. Manivasagam, G., Dhinakaran, G., Sivakumar, G., & Sundarajan, G. (2016). Effect of plasma spraying parameters on microstructure and mechanical properties of 316L stainless steel coatings. Surface and Coatings Technology, 299, 46-54. DOI: 10.1016/j.surfcoat.2016.05.077
10. Abdulrahman, A. O., Abdulgader, H. A., Masoud, M. S., Sreekumar, P. A., & Manivasagam, G. (2020). Investigation of mechanical properties of plasma- sprayed AA7075 aluminum alloy coatings // Journal of Materials Engineering and Performance, 29(9), 5869-5879. DOI: 10.1007/s11665-020- 04972-1.
11. Huang, H., Zhang, W., Zhang, Y., Zhang, H., Huang, Y., & Hu, Z. (2019). Effects of graphene oxide addition on tribological properties of nickel-based alloy coatings by plasma spraying // Journal of Materials Engineering and Performance, 28(6), 3336-3345. DOI: 10.1007/s11665-019-03970-w.
12. Pawłowski A. Plasma spraying of metallic and ceramic materials // Surface and Coatings Technology. Vol. 54-55. P. 1-14. 1992.
13. Lotsch B.V. Plasma spraying of oxide ceramics - a review of mechanisms and applications // Journal of Materials Science. Vol. 23. № 12. P. 4175- 4196, 1988.
14. Yang C.Y., Zhang J., Huang X. and Li X. Microstructure and mechanical properties of WC-Co coatings prepared by high velocity oxygen fuel and plasma spraying // Surface and Coatings Technology. Vol. 206. № 6. P. 1415-1420. 2011.
15. Berndt C.C. Plasma spraying and the properties of plasma-sprayed coatings // Journal of Thermal Spray Technology. Vol. 8. № 4. P. 494-508. 1999.
16. Dorfman M., Bulavchenko A. and Gromov A. Effect of the plasma spray parameters on microstructure and properties of Al2O3 and Cr2O3 coatings // Journal of Thermal Spray Technology. Vol. 25. № 7. p. 1373-1385. 2016.
17. Sampath S. Thermal spray processing of advanced materials: promising technologies and applications // Journal of Materials Science. Vol. 42. № 4. P. 1055-1079. 2007.
18. Vaßen R., Stöver D. and Gadow R. Plasma spraying: a review of basic principles, high-temperature properties and new materials developments // Surface and Coatings Technology. Vol. 76-77. P. 485-498. 1995.
19. Tomašević H., Radović N., Gorgievski M., Rakin M. and Pavlović Z. The application of thermal spray coatings in marine engineering // Journal of Thermal Spray Technology. Vol. 22. №. 7. P. 1069-1076. 2013.
20. Smialek J.L. and Miller R.A. Thermal spray coatings in marine environ- ments // Journal of Thermal Spray Technology. Vol. 7. № 3. P. 369-380. 1998.
21. Al-Fadhalah H.K. M.K., Al-Qutub A.M. and Hussain T. Thermal spray coatings for marine applications: a review// Journal of Coatings. Vol. 2016. Article ID 4723852, 21 pages, 2016.
22. Li D., Li L., Gao Y. and Li X. Marine anticorrosive coatings based on thermal spray technology: a review // Journal of Thermal Spray Technology. Vol. 26. № 1-2. P. 87-98. 2017.
23. McCartney D.G. Thermal spray coatings for marine applications // Surface and Coatings Technology. Vol. 116-119. P. 763-771. 1999.
24. Ozbilen M.E. Use of thermal spray coatings for corrosion protection in marine environments: a review // Materials and Corrosion. Vol. 68. № 1. P. 3-13. 2017.
25. Lima R.S., Lima R.S., Fonseca R.B. and Cavaleiro A.J.A. // Thermal spray coatings for marine environments: a review. Coatings. Vol. 8. № 12. P. 440. 2018.
26. Plahotnyk V.A., Konskaya A.A. (2013) Determination of the temperature field in the surface layer of the workpiece during thermofriction cutting. Bulletin of the East Ukrainian National University named after V. Dalya, 4, 150-152 [in Russian].
27. Chichko A.N., Kukui D.M., Sobolev V.F., Lykhouzov S.G., Sachek O.A. (2012) Modeling of the heating and cooling processes of parts based on the three-dimensional equation of heat conduction in Proterm-1 SAE. Casting and metallurgy. 1. 65-70 [in Russian].
28. Zhuravchak L., Kruk O. (2013) Mathematical modeling of the heat field distribution in a parallelepiped taking into account complex heat exchange at its boundary and internal sources. Bulletin of the National University of Lviv Polytechnic. Computer science and information technology, 771, 291-302 [in Ukrainian].
29. Nikolskyi, O.I., Sheremeta O.P. (2017). Modeling of thermal processes in REA: training manual. Vinnytsia: VNTU, P. 116.
30. Weman K. 1 - Arc welding – an overview. Welding Processes Handbook, Woodhead Publishing. 2003. P. 1-25.
31. Vural M. Welding Processes and Technologies. Comprehensive Materials Processing, edited by Saleem Hashmi, Gilmar Ferreira Batalha, Chester J. Van Tyne and Bekir Yilbas, Elsevier, Oxford. 2014. P. 3-48.
32. Guimaraes P.B. Et al. Obtaining Temperature Fields as a Function of Efficiency in TIG Welding by Numerical Modeling. Thermal Engineering. 2011. 10. P. 50-54.
33. Kopylov V.Y., Smirnov I.V., Seliverstov I.A., Davydov A.A. (2008) Investigations of parameters of plasma flows of a vacuum arc discharge during plating of powders. Probl. Techniques, 1, 63-78 [in Russian].
34. Kotelnikov V.A., Kotelnikov M.V. (2008) Cylindrical probe in a flow of slowly moving collisional plasma. TVT, 3, 342—346 [in Russian].
35. Paton B.E. (2005) Modern achievements in the area of conflict and related processes. Automatic conflict, 8, 3-19 [in Russian].
36. Restoration of machine parts: reference book / Panteleenko F.I., Lyalyakin V.L., Ivanov V.P.,Konstantinov V.M. // editor. Ivanov V.P. Moscow: Mashinostroenie, 2003. 672 p. [in Russian].
37. Hladkyi P.V. Plasma coating / P.V. Hladkyi, E.F. Perepletchikov, I.A. Ryabtsev. K.: Ekotehnologiya, 2007. 292 p. [in Russian].
38. Kamel G.I. Technological processes and complexes of restoration and strengthening of parts: lecture notes / G.I. Kamel, V.M. Milyutin. Dniprodzerzhynsk: DDTU, 2014, 167 p. [in Ukrainian].
39. Zusyn V.Ya. Welding and surfacing of aluminum and ego alloys / V.Ya. Zusyn, V.A. Serenko. Mariupol: Renata Publishing House, 2004,468 p. [in Russian].
40. Korzh V.M. (2005) Application of coating : educational guide. K.: Aristei, 204 p. [in Russian].
41. Kuskov, Yu.M., Skorokhodov V.N., Ryabtsev I.A., Sarychev I.S. (2001) Electroslag coating. M.: Nauka i tekhnologiya, 180 p. [in Russian].
42. Ryabtsev I.A. (2004) Coating of machine and mechanism parts. K.: Ecotechnology, 160 p. [in Russian].
43. Burennikov, Yu.A. B91 New materials and composites: a study guide. Yu.A. Burennikov, I.O. Sivak, S.I. Sukhorukov, Vinnytsia: VNTU, 2013, 161p. [in Ukrainian].
44. Kopan V. Composite materials [scientific manual]. K.: Pulsary, 2004, 193 p. [in Ukrainian].
45. Gogaev K.A., Ulshin V.I. Powder metallurgy of tool steels. Donetsk: Knowledge, 2012 [in Russian].
46. Ulshin V.I., Gogaev K.O., Ulshin S.V. (2009) Effect of high cooling rates on structure formation and mechanical properties of tool materials. Powder metallurgy, 9/10, 72-80 [In Ukrainian].
47. Gogaev K.A., Voloshchenko S.M., Podrezov Y.N. (2016) Technological principles of obtaining composite modifiers by rolling powder mixtures. Powder modifying mixtures. Composition, structure, properties. Powder metallurgy, 5/6, 27-36 [in Russian].
48. Yermolaev, G.V. Strength of welded joints. Mykolaiv: NUK, 2007, 220 p. [in Ukrainian].
49. Makhnenko, V.I. Resource of safe operation of welded joints and nodes of modern structures. K.: Naukova dumka, 2006. 620 p. [in Russian].
50. Makhnenko V.I., Yermolaev G.V., Kvasnytskyi V.V., Labartkava A.V. Stresses and deformations during welding. Mykolaiv: NUK, 2011, 240 p. [in Ukrainian].
51. Sigova V.I. Methods of local surface treatment of machine parts: Training manual. Sigova V.I., Rudenko P.V. Sumy: Publishing House of Sumy State University, 2008, 218 p. [in Ukrainian].
52. Korytov M.S. Physico-chemical processes in the processing of metals: Methodological instructions and control tasks for the discipline «Physico- chemical processes in the processing of metals». Omsk: SybADI, 2011, 12 p. [in Russian].
53. Bakan, E. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties / E. Bakan, R. Vaßen // Journal of Thermal Spray Technology. 2017. Vol. 26.– P. 992-1010.
54. Thermal Plasma Spraying Applied on Solid Oxide Fuel Cells / D. Soysal, J. Arnold, P. Szabo [et al.] // Journal of Thermal Spray Technology. 2013. Vol. 22 (5). P. 588-598.
55. Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review / F.-L. Toma, A. Potthoff, L.-M. Berger, C. Leyens // Journal of Thermal Spray Technology. 2015. Vol. 24 (7). P. 1143-1152.
56. Liquid Feedstock Plasma Spraying: An Emerging Process for Advanced Thermal Barrier Coatings / N. Markocsan, M. Gupta, S. Joshi [et al.] // Journal of Thermal Spray Technology. 2017. Vol. 26 (7). P. 1104-1114.
57. Jordan, E. The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations / E. Jordan, C. Jiang, M. Gell // Journal Thermal Spray Technology. 2015. Vol. 24 (7). P. 1153-1165.
58. The key process parameters influencing formation of columnar micro- structure in suspen-sion plasma sprayed zirconia coatings / P. Sokołowski, S. Kozerski, L. Pawłowski, A. Ambroziak // Surface & Coatings Technology. 2014. Vol. 260. P. 97-106.
59. Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS) / A. Ganvir, N. Curry, S. Björklund [et al.] // Journal Thermal Spray Technology. 2015. Vol. 24 (7). P. 1195-1204.
60. Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Sub-strate / M. Jadidi, M. Mousavi, S. Moghtadernejad, A.A. Dolata- badi // Journal Thermal Spray Technology. 2015. Vol. 24 (1-2). P. 11-23.
61. Thermal-barrier coatings for more efficient gas-turbine engines: special issue MRS Bulletin. 2012. Vol. 37 (10). 273 p.
62. Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings / H. Kassner, R. Siegert, D. Hathiramani [et al.] // Journal Thermal Spray Technology. 2008. Vol. 17 (1). P. 115-123.
63. Belyaev V.V., Gulyaev I.P. (2018) Verification of a numerical model of gas dynamics of supersonic air-air plasma flow. High-performance computing systems and technologies, 2(9), 47-53. [in Russian].
64. Gulyaev, P.Yu., Gulyaev I.P. (2009) Modeling of technological processes of plasma sputtering covered with nano-sized thickness. Control systems and information technologies, Vol. 35, 1-1, 144-148. [in Russian].
65. Boronenko, M.P., Gulyaev, P.Yu., Trifonov A.L. (2012) Determination of the fundamental flow diagram of a laminar plasmatron with constant powder supply. Bulletin of the Yugorsk State University, 2(25), 16-20. [in Russian].
66. Boronenko, M.P., Gulyaev, P.Yu., Seregin A.E. (2014) Measurement of the velocity and temperature of particles in the flow of low-temperature plasma. Bulletins of higher educational institutions. Physics, Vol. 57, 3-2, 70-73. [in Russian].
67. Thermal analysis of reaction producing KXTiO2 / K. Borodina, S. Sorokina, N. Blinova [et al.] // Journal of Thermal Analysis and Calorimetry. 2018. Vol. 131. P. 561-566.
68. Khennane, A. (2013) Introduction to Finite Element Analysis Using MATLAB® and Abaqus. CRC Press. Taylor & Francis Group.
69. Pryor, R.W. (2011) Multiphysics modeling using COMSOL: a first principles approach. Jones and Bartlett Publishers.
70. Xiaolin Chen, Yijun Liu (2019) Finite Element Modeling and Simulation with ANSYS Workbench. Second Edition. CRC Press Taylor & Francis Group.